OFFSET
1,1
COMMENTS
If the generalized Wall's conjecture to A006190 is true, then we can calculate A175182(m) when m is a prime power since for any k>=1 : A175182(prime(n)^k)=a(n)*prime(n)^(k-1). For example: A175182(2^k)=3*2^(k-1)=A007283(k-1).
In fact, the conjecture fails on p=241, and this is the only counterexample below 10^8.
LINKS
Eric Chen, Table of n, a(n) for n = 1..1000
MATHEMATICA
Table[s = t = Mod[{0, 1}, Prime[n]]; cnt = 1; While[tmp = Mod[3*t[[2]] + t[[1]], n]; t[[1]] = t[[2]]; t[[2]] = tmp; s!= t, cnt++]; cnt, {n, 100}]
PROG
(PARI)
fibmod(n, m)=((Mod([3, 1; 1, 0], m))^n)[1, 2]
entry(p)=my(k=1, c=Mod(1, p), o); while(c, [o, c]=[c, 3*c+o]; k++); ka(n)=entry(prime(n))
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric Chen, Apr 11 2015
STATUS
approved