login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253246
Pisano period of A006190 to mod prime(n).
1
3, 2, 12, 16, 8, 52, 16, 40, 22, 28, 64, 76, 28, 42, 96, 26, 24, 30, 136, 144, 148, 26, 168, 180, 196, 50, 102, 106, 20, 112, 126, 10, 92, 138, 300, 304, 156, 328, 336, 86, 178, 180, 190, 388, 396, 198, 30, 448, 456, 460, 116, 160, 484, 250, 128, 262, 268, 544, 138, 564
OFFSET
1,1
COMMENTS
If the generalized Wall's conjecture to A006190 is true, then we can calculate A175182(m) when m is a prime power since for any k>=1 : A175182(prime(n)^k)=a(n)*prime(n)^(k-1). For example: A175182(2^k)=3*2^(k-1)=A007283(k-1).
In fact, the conjecture fails on p=241, and this is the only counterexample below 10^8.
FORMULA
a(n) = A175182(A000040(n)).
MATHEMATICA
Table[s = t = Mod[{0, 1}, Prime[n]]; cnt = 1; While[tmp = Mod[3*t[[2]] + t[[1]], n]; t[[1]] = t[[2]]; t[[2]] = tmp; s!= t, cnt++]; cnt, {n, 100}]
PROG
(PARI)
fibmod(n, m)=((Mod([3, 1; 1, 0], m))^n)[1, 2]
entry(p)=my(k=1, c=Mod(1, p), o); while(c, [o, c]=[c, 3*c+o]; k++); ka(n)=entry(prime(n))
CROSSREFS
Sequence in context: A005220 A243660 A220883 * A152550 A114798 A167639
KEYWORD
nonn
AUTHOR
Eric Chen, Apr 11 2015
STATUS
approved