login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253241
The "Reverse and Add!" problem in base 12: sequence lists the final palindrome number for n, or -1 if no palindrome is ever reached. (Written in base 10.)
1
0, 2, 4, 6, 8, 10, 13, 39, 65, 91, 117, 143, 13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 169, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 169, 169, 39, 52, 65, 78, 91, 104, 117, 130, 143, 169, 169, 507, 52, 65, 78, 91, 104, 117, 130, 143, 169, 169, 507, 676, 65, 78, 91, 104, 117
OFFSET
0,2
COMMENTS
Is a(n) = -1 possible? All numbers below 100 (decimal 144) reach a palindrome.
a(237) is conjectured to be -1.
A060382 lists the smallest possible Lychrel number in base n.
EXAMPLE
a(29) = 91 since (in duodecimal) 25 (decimal 29) + 52 = 77 (decimal 91) and 77 is a palindrome.
a(69) = 507 since (in duodecimal) 59 (decimal 69) + 95 = 132, 132 + 231 = 363 (decimal 507) and 363 is a palindrome.
a(105) = 1885 since (in duodecimal) 89 (decimal 105) + 98 = 165, 165 + 561 = 706, 706 + 607 = 1111 (decimal 1885) and 1111 is a palindrome.
MATHEMATICA
tol = 1728; r[n_] := FromDigits[Reverse[IntegerDigits[n, 12]], 12]; palQ[n_] := n == r[n]; ar[n_] := n + r[n]; Table[k = 0; If[palQ[n], n = ar[n]; k = 1]; While[! palQ[n] && k < tol, n = ar[n]; k++]; If[k == tol, n = -1]; n, {n, 0, 144}]
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Eric Chen, Apr 07 2015
STATUS
approved