Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 May 28 2021 13:23:14
%S 754,8151,5125,90512,52962,35674,1012633,566649,418853,258746,
%T 11398109,6175841,5247300,3590945,1877439,128428125,68396118,67554413,
%U 54457598,31484714,13648650,1448958659,754814607,904486202,899378367,606913688
%N T(n,k) = Number of (n+2) X (k+2) 0..3 arrays with every consecutive three elements in every row having 2 or 3 distinct values, in every column 1 or 2 distinct values, in every diagonal 2 distinct values, and in every antidiagonal 2 distinct values, and new values 0 upwards introduced in row major order.
%C Table starts
%C ........754........8151.......90512......1012633.....11398109....128428125
%C .......5125.......52962......566649......6175841.....68396118....754814607
%C ......35674......418853.....5247300.....67554413....904486202..12006682353
%C .....258746.....3590945....54457598....899378367..16084394412.280079543014
%C ....1877439....31484714...606913688..13412317102.332404559794
%C ...13648650...273765237..6778023822.202527530051
%C ...99324229..2405660944.76682086492
%C ..722975673.21164695786
%C .5263920930
%H R. H. Hardin, <a href="/A252917/b252917.txt">Table of n, a(n) for n = 1..49</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 64] for n > 65.
%F Empirical for row n:
%F n=1: [linear recurrence of order 40] for n > 41.
%e Some solutions for n=2, k=4
%e ..0..1..0..0..2..1....0..1..1..2..0..0....0..1..1..0..2..3....0..0..1..2..2..1
%e ..0..1..0..1..0..2....0..1..1..0..1..0....0..1..1..0..0..3....0..0..2..1..2..3
%e ..0..1..1..0..0..2....0..1..1..0..1..2....0..1..0..3..0..2....0..0..1..2..3..1
%e ..0..0..1..0..3..0....0..1..0..0..1..0....0..1..0..0..3..3....0..2..1..1..3..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 24 2014