login
A252586
Numbers n such that the heptagonal number H(n) is equal to the sum of the pentagonal numbers P(m) and P(m+1) for some m.
2
4, 257, 1772, 123729, 853956, 59636977, 411604876, 28744899041, 198392696132, 13854981700641, 95624867930604, 6678072434809777, 46090987949854852, 3218817058596611729, 22215760566962107916, 1551463144171132043457, 10707950502287786160516
OFFSET
1,1
COMMENTS
Also positive integers y in the solutions to 6*x^2-5*y^2+4*x+3*y+2 = 0, the corresponding values of x being A252585.
FORMULA
a(n) = a(n-1)+482*a(n-2)-482*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+11*x^3-413*x^2+253*x+4) / ((x-1)*(x^2-22*x+1)*(x^2+22*x+1)).
EXAMPLE
4 is in the sequence because H(4) = 23 = 12+22 = P(3)+P(4).
PROG
(PARI) Vec(-x*(x^4+11*x^3-413*x^2+253*x+4)/((x-1)*(x^2-22*x+1)*(x^2+22*x+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 18 2014
STATUS
approved