OFFSET
1,1
COMMENTS
Also positive integers y in the solutions to 6*x^2-5*y^2+4*x+3*y+2 = 0, the corresponding values of x being A252585.
LINKS
Colin Barker, Table of n, a(n) for n = 1..745
Index entries for linear recurrences with constant coefficients, signature (1,482,-482,-1,1).
FORMULA
a(n) = a(n-1)+482*a(n-2)-482*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+11*x^3-413*x^2+253*x+4) / ((x-1)*(x^2-22*x+1)*(x^2+22*x+1)).
EXAMPLE
4 is in the sequence because H(4) = 23 = 12+22 = P(3)+P(4).
PROG
(PARI) Vec(-x*(x^4+11*x^3-413*x^2+253*x+4)/((x-1)*(x^2-22*x+1)*(x^2+22*x+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 18 2014
STATUS
approved