OFFSET
1,1
COMMENTS
Also nonnegative integers x in the solutions to 18*x^2-6*y^2+24*x+4*y+18 = 0, the corresponding values of y being A251625.
It seems that the least significant digit of each term is 8.
LINKS
Colin Barker, Table of n, a(n) for n = 1..291
Index entries for linear recurrences with constant coefficients, signature (2703,-2703,1).
FORMULA
a(n) = 2703*a(n-1)-2703*a(n-2)+a(n-3).
G.f.: 2*x*(x^2-762*x-139) / ((x-1)*(x^2-2702*x+1)).
a(n) = 2*(-3 - (2*sqrt(3)+3)*(1351+780*sqrt(3))^(-n) + (2*sqrt(3)-3)*(1351+780*sqrt(3))^n) / 9. - Colin Barker, May 30 2017
EXAMPLE
278 is in the sequence because N(278)+N(279)+N(280) = 231296+232965+234640 = 698901 = N(483).
MATHEMATICA
LinearRecurrence[{2703, -2703, 1}, {278, 752958, 2034494038}, 20] (* Harvey P. Dale, Feb 14 2015 *)
PROG
(PARI) Vec(2*x*(x^2-762*x-139)/((x-1)*(x^2-2702*x+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 06 2014
STATUS
approved