login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2 more than the largest even number among {A098550(1), A098550(2), ..., A098550(n)}.
5

%I #17 Aug 02 2018 11:54:57

%S 2,4,4,6,6,10,10,16,16,16,16,16,16,18,18,18,18,22,22,24,24,24,24,24,

%T 28,28,30,30,34,34,34,34,34,34,36,36,38,38,38,38,40,40,40,44,44,46,46,

%U 46,46,52,52,52,52,54,54,54,54,58,58,64,64,64,64,64,66,66,70,70,70,70,70,70,70

%N a(n) = 2 more than the largest even number among {A098550(1), A098550(2), ..., A098550(n)}.

%H Reinhard Zumkeller, <a href="/A251557/b251557.txt">Table of n, a(n) for n = 1..10000</a>

%H David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, <a href="http://arxiv.org/abs/1501.01669">The Yellowstone Permutation</a>, arXiv preprint arXiv:1501.01669 [math.NT], 2015 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Sloane/sloane9.html">J. Int. Seq. 18 (2015) 15.6.7</a>.

%t terms = 100;

%t f[lst_] := Block[{k = 4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]];

%t A098550 = Nest[f, {1, 2, 3}, terms - 3];

%t a[1] = 2; a[n_] := Max[Select[A098550[[1 ;; n]], EvenQ]] + 2;

%t Array[a, terms] (* _Jean-François Alcover_, Aug 02 2018, after _Robert G. Wilson v_ *)

%o (Haskell)

%o a251557 n = a251557_list !! (n-1)

%o a251557_list = map (+ 2) $ tail $ scanl maxEven 0 a098550_list

%o where maxEven u v = if even v then max u v else u

%o -- _Reinhard Zumkeller_, Mar 10 2015

%Y Cf. A098550, A251546, A251558, A251559.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Dec 23 2014