login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250858
Number of (6+1) X (n+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.
1
233683, 1280447, 4648157, 13263136, 32201019, 69543783, 137379337, 252943672, 439905571, 729793879, 1163567333, 1793326952, 2684170987, 3916192431, 5586619089, 7812096208, 10731111667, 14506563727, 19328471341, 25416827024
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 198*n^6 + (35807/12)*n^5 + (204911/12)*n^4 + (214827/4)*n^3 + (998209/12)*n^2 + (180451/3)*n + 16384.
Conjectures from Colin Barker, Nov 22 2018: (Start)
G.f.: x*(233683 - 355334*x + 592371*x^2 - 563481*x^3 + 333624*x^4 - 114687*x^5 + 16384*x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=1.
..2..2....0..0....2..0....2..2....0..0....0..0....2..2....2..2....2..2....0..0
..0..0....2..2....0..0....3..3....1..1....0..0....1..1....1..1....1..1....1..1
..3..3....3..3....2..2....0..0....3..3....2..2....1..1....1..1....0..0....0..0
..3..3....1..3....3..3....2..2....2..2....1..1....1..1....1..1....1..1....0..0
..2..2....0..2....0..1....1..3....2..2....1..1....3..3....2..2....2..2....0..2
..0..0....0..3....2..3....0..2....1..2....3..3....3..3....1..1....0..3....0..2
..0..1....0..3....2..3....1..3....1..3....1..3....0..1....0..2....0..3....0..3
CROSSREFS
Row 6 of A250853.
Sequence in context: A250682 A238500 A224656 * A233902 A202938 A109690
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 28 2014
STATUS
approved