OFFSET
1,1
COMMENTS
Table starts
....2......5.......8........13.........18.........25..........32...........41
....8.....25......60.......117........200........321.........480..........681
...14.....83.....302.......761.......1648.......3125........5446.........8843
...32....297....1516......5105......13732......31173.......63400.......117749
...62....989....7126.....31525.....106362.....290909......695890......1486139
..128...3113...30780....177421.....744564....2457921.....6924692.....17094253
..254...9611..127586....937817....4808120...18934449....62245658....176612641
..512..29257..518052...4803653...29723864..137976845...522997696...1688068993
.1022..88503.2085808..24257725..180290280..980389815..4258085394..15526286669
.2048.266769.8367220.121800949.1085927844.6899647449.34261234132.140731044189
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..159
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3)
k=2: [order 10] for n>15
Empirical for row n:
n=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4); also a quadratic polynomial plus a constant quasipolynomial with period 2
n=2: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -4*a(n-4) +2*a(n-5) -a(n-6) +2*a(n-7) -a(n-8); also a cubic polynomial plus a linear quasipolynomial with period 3
n=3: [order 21; also a quartic polynomial plus a linear quasipolynomial with period 60]
EXAMPLE
Some solutions for n=5 k=4
..0....0....1....4....4....3....4....0....3....0....1....1....1....3....0....3
..1....2....2....0....0....0....4....1....2....4....0....1....2....0....0....3
..3....2....0....3....3....0....1....3....4....4....0....2....2....1....2....1
..3....3....2....4....0....3....2....3....3....3....4....2....0....0....4....0
..1....1....1....1....1....3....4....3....0....1....3....2....2....1....0....1
..3....0....2....1....4....4....4....4....0....1....3....1....0....3....2....4
..4....0....1....3....0....1....2....1....1....3....2....3....1....4....2....0
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 25 2014
STATUS
approved