login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250486
A(n,k) is the n^k-th Fibonacci number; square array A(n,k), n>=0, k>=0, read by antidiagonals.
10
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 2, 1, 0, 1, 21, 34, 3, 1, 0, 1, 987, 196418, 987, 5, 1, 0, 1, 2178309, 37889062373143906, 10610209857723, 75025, 8, 1
OFFSET
0,13
LINKS
FORMULA
A(n,k) = [0, 1; 1, 1]^(n^k)[1,2].
EXAMPLE
Square array A(n,k) begins:
1, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 3, 21, 987, 2178309, ...
1, 2, 34, 196418, 37889062373143906, ...
1, 3, 987, 10610209857723, ...
1, 5, 75025, 59425114757512643212875125, ...
1, 8, 14930352, ...
1, 13, 7778742049, ...
MAPLE
A:= (n, k)-> (<<0|1>, <1|1>>^(n^k))[1, 2]:
seq(seq(A(n, d-n), n=0..d), d=0..8);
MATHEMATICA
A[n_, k_] := MatrixPower[{{0, 1}, {1, 1}}, n^k][[1, 2]]; A[0, 0] = 1;
Table[A[n, d-n], {d, 0, 8}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 28 2019, from Maple *)
CROSSREFS
Main diagonal gives A250495.
Cf. A000045.
Sequence in context: A068494 A200726 A195040 * A316826 A256449 A355340
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Nov 24 2014
STATUS
approved