login
Numbers k such that sigma(k) contains the same digits as k in base 10.
2

%I #21 Sep 08 2022 08:46:10

%S 1,69,211,258,270,276,433,609,639,787,877,1021,1201,1231,1255,1291,

%T 1321,1433,1621,1721,1787,1877,2011,2111,2131,2141,2161,2204,2311,

%U 2391,2411,2556,2676,2711,2931,3121,3343,3409,3413,3433,3463,3554,3643,3678,3679,3877

%N Numbers k such that sigma(k) contains the same digits as k in base 10.

%C Supersequence of A115920 and A069216.

%H Harvey P. Dale, <a href="/A249899/b249899.txt">Table of n, a(n) for n = 1..1000</a>

%e 211 is in the sequence because the set of digits of n {1, 2} equals the set of digits of sigma(211) = 212.

%t Select[Range[4000],Union[IntegerDigits[DivisorSigma[1,#]]] == Union[ IntegerDigits[#]]&] (* _Harvey P. Dale_, Dec 29 2015 *)

%o (Magma) [n: n in [1..10^5] | Set(Intseq(n)) eq Set(Intseq(SumOfDivisors(n)))];

%o (PARI) isok(n) = Set(digits(n)) == Set(digits(sigma(n))); \\ _Michel Marcus_, May 27 2018

%Y Cf. A000203, A069216, A115920.

%K nonn,base

%O 1,2

%A _Jaroslav Krizek_, Jan 05 2015