login
The smallest prime whose square divides the first nonsquarefree number on row n of Pascal's triangle, 1 if all terms on that row are squarefree.
6

%I #6 Nov 05 2014 11:22:12

%S 1,1,1,1,2,1,2,1,2,3,3,1,2,3,2,3,2,2,3,3,2,3,2,1,2,5,5,3,2,3,2,3,2,2,

%T 2,2,2,3,2,3,2,2,2,3,2,3,3,3,2,7,5,5,2,5,3,3,2,2,2,3,2,2,2,3,2,2,2,2,

%U 2,2,2,2,2,2,2,5,2,5,2,3,2,3,3,3,2,3,2,3,2,2,3,3,2,3,2,3,2,2,7,3,2,5,2,5,2,2,2,5,2,3,2,3,2,2,2,2,2,3,3,3,2

%N The smallest prime whose square divides the first nonsquarefree number on row n of Pascal's triangle, 1 if all terms on that row are squarefree.

%C All such n, for which a(n) < 3, form a subsequence of A249724.

%F a(n) = A249739(A249716(n)).

%o (Scheme) (define (A249717 n) (A249739 (A249716 n)))

%Y Cf. A249716, A249739, A249724.

%Y Differs from A249718 for the first time at n=36, where a(36) = 2, while A249718(36) = 3.

%K nonn

%O 0,5

%A _Antti Karttunen_, Nov 04 2014