login
A249619
Triangle T(m,n) = number of permutations of a multiset with m elements and signature corresponding to n-th integer partition (A194602).
2
1, 1, 2, 1, 6, 3, 1, 24, 12, 4, 6, 1, 120, 60, 20, 30, 5, 10, 1, 720, 360, 120, 180, 30, 60, 6, 90, 15, 20, 1, 5040, 2520, 840, 1260, 210, 420, 42, 630, 105, 140, 7, 210, 21, 35, 1, 40320, 20160, 6720, 10080, 1680, 3360, 336, 5040, 840, 1120, 56
OFFSET
0,3
COMMENTS
This triangle shows the same numbers in each row as A036038 and A078760 (the multinomial coefficients), but in this arrangement the multisets in column n correspond to the n-th integer partition in the infinite order defined by A194602.
Row lengths: A000041 (partition numbers), Row sums: A005651
Columns: 0: A000142 (factorials), 1: A001710, 2: A001715, 3: A133799, 4: A001720, 6: A001725, 10: A001730, 14: A049388
Last in row: end-2: A037955 after 1 term mismatch, end-1: A001405, end: A000012
The rightmost columns form the triangle A173333:
n 0 1 2 4 6 10 14 21 (A000041(1,2,3...)-1)
m
1 1
2 2 1
3 6 3 1
4 24 12 4 1
5 120 60 20 5 1
6 720 360 120 30 6 1
7 5040 2520 840 210 42 7 1
8 40320 20160 6720 1680 336 56 8 1
A249620 shows the number of partitions of the same multisets. A187783 shows the number of permutations of special multisets.
EXAMPLE
Triangle begins:
n 0 1 2 3 4 5 6 7 8 9 10
m
0 1
1 1
2 2 1
3 6 3 1
4 24 12 4 6 1
5 120 60 20 30 5 10 1
6 720 360 120 180 30 60 6 90 15 20 1
KEYWORD
nonn,tabf
AUTHOR
Tilman Piesk, Nov 04 2014
STATUS
approved