login
A249386
Decimal expansion of the constant 'a' appearing in the asymptotic expression of the number of plane partitions of n as a*n^(-25/36)*exp(b*n^(2/3)).
4
2, 3, 1, 5, 1, 6, 8, 1, 3, 4, 4, 8, 8, 9, 8, 3, 7, 0, 5, 6, 0, 3, 5, 6, 4, 0, 6, 4, 0, 6, 3, 3, 2, 1, 1, 0, 8, 5, 5, 1, 2, 9, 2, 1, 2, 5, 9, 3, 2, 8, 7, 9, 2, 6, 5, 9, 7, 9, 4, 4, 5, 2, 4, 1, 7, 6, 7, 3, 9, 6, 6, 5, 4, 3, 9, 4, 4, 2, 0, 2, 2, 7, 4, 5, 1, 2, 7, 5, 3, 1, 9, 7, 2, 3, 2, 5, 3, 0, 3, 0, 2, 3, 6, 6
OFFSET
0,1
COMMENTS
The paper by Finch contains an error: the denominator should be sqrt(3*Pi), not sqrt(Pi). The constant 0.4009988836 is wrong. The formula in A000219 and the article by L. Mutafchiev and E. Kamenov (page 6) is correct. - Vaclav Kotesovec, Oct 27 2014. [In new version of prt.pdf is already corrected. - Vaclav Kotesovec, May 11 2015]
LINKS
Steven Finch, Integer Partitions, September 22, 2004. [Cached copy, with permission of the author]
L. Mutafchiev and E. Kamenov, On The Asymptotic Formula for the Number of Plane Partitions..., C. R. Acad. Bulgare Sci. 59(2006), No. 4, 361-366.
FORMULA
a = zeta(3)^(7/36)*exp(zeta'(-1))/(2^(11/36)*sqrt(3*Pi).
Equals exp(1/12) * A002117^(7/36) / (A074962 * 2^(11/36) * sqrt(3*Pi)). - Vaclav Kotesovec, Mar 02 2015
EXAMPLE
0.231516813448898370560356406406332110855129212593287926597944524...
MATHEMATICA
a = Zeta[3]^(7/36)*Exp[Zeta'[-1]]/(2^(11/36)*Sqrt[3*Pi]); RealDigits[a, 10, 104] // First
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved