login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248982
Sequence of distinct least positive numbers such that the average of the first n terms is a Fibonacci number.
1
1, 3, 2, 6, 13, 5, 26, 8, 53, 93, 21, 177, 34, 328, 55, 599, 89, 1079, 144, 1924, 233, 3401, 377, 5969, 610, 10412, 987, 18067, 1597, 31207, 2584, 53688, 4181, 92037, 6765, 157281, 10946, 268016, 17711, 455551, 28657, 772519, 46368, 1307276, 75025, 2207953, 121393, 3722593, 196418, 6266068, 317811
OFFSET
1,2
LINKS
Sela Fried, Proofs of some Conjectures from the OEIS, arXiv:2410.07237 [math.NT], 2024. See pp. 11-12.
FORMULA
Conjecture: a(n) = 2*a(n-2)+a(n-4)-2*a(n-6)-a(n-8) for n > 17. - Colin Barker, Oct 19 2014
Empirical g.f.: x*(x -1)*(40*x^15 +98*x^13 +4*x^11 +3*x^10 -80*x^9 +7*x^8 -2*x^6 -2*x^5 -12*x^4 -4*x^3 -4*x^2 -4*x -1) / (x^4 +x^2 -1)^2. - Colin Barker, Oct 19 2014
Conjecture: For n > 4, a(2*n+1) = A000045(n+3).
EXAMPLE
1/1 = 1 is a Fibonacci number. So a(1) = 1.
(1+2)/2 is not a Fibonacci number. (1+3)/2 = 2 is a Fibonacci number. So a(2) = 3.
(1+3+2)/3 = 2 is a Fibonacci number. So a(3) = 2.
PROG
(PARI) v=[]; n=1; while(n<10^7, num=(vecsum(v)+n); if(num%(#v+1)==0&&vecsearch(vecsort(v), n)==0, for(i=1, n+2, if(fibonacci(i)>(num/(#v+1)), break); if(fibonacci(i)==(num/(#v+1)), print1(n, ", "); v=concat(v, n); n=1; break))); n++)
CROSSREFS
Sequence in context: A091461 A078091 A073883 * A333446 A289069 A074718
KEYWORD
nonn
AUTHOR
Derek Orr, Oct 18 2014
STATUS
approved