OFFSET
1,2
COMMENTS
The squares of the form p^2 with p prime are in the sequence because the divisors of 2p^2 are {1,2,p,2p,p^2,2p^2} => sum of even divisors s0 = 2+2p+2p^2 = 2(p^2+p+p^2) and sum of odd divisors s1 = 1+p+p^2 and lambda(s0) = lambda(s1) = lambda(2*s0).
A majority of primes are in the sequence: 3, 5, 11, 13, 17, 19, 29, 37, 41, 43, 53, 59, 61, 67, 73, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 157, 163, 173, 179, 181, 193, 197, ... but the primes 7, 23, 31, 47, 71, 79, 127, 151, 167, 191, 223, 239, 263, 367, 383, 431, ... are not in the sequence.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
EXAMPLE
MATHEMATICA
lst={}; f[x_] := Plus @@ Select[Divisors[x], OddQ[#] &]; g[x_] := Plus @@ Select[Divisors[x], EvenQ[#]&]; Do[If[CarmichaelLambda[f[n]]== CarmichaelLambda[g[n]], AppendTo[lst, n/2]], {n, 1, 500}]; lst
PROG
(PARI) a002322(n) = lcm(znstar(n)[2]);
isok(n) = my(sod = sumdiv(2*n, d, d*(d%2))); my(sed = sigma(2*n) - sod); sod && sed && (a002322(sod) == a002322(sed)); \\ Michel Marcus, Mar 07 2015
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Michel Lagneau, Mar 05 2015
STATUS
approved