login
A248881
Numbers n such that lambda(sum of even divisors of 2n) = lambda(sum of odd divisors of 2n) where lambda is the Carmichael function (A002322).
2
1, 3, 5, 6, 9, 11, 13, 17, 18, 19, 25, 26, 27, 29, 36, 37, 38, 41, 43, 45, 49, 50, 53, 54, 59, 61, 63, 65, 67, 68, 72, 73, 74, 75, 81, 82, 83, 85, 86, 87, 89, 90, 95, 97, 98, 99, 100, 101, 103, 107, 109, 113, 117, 121, 122, 125, 126, 130, 131, 134, 137, 139
OFFSET
1,2
COMMENTS
Number n such that A002322(A074400(n))= A002322(A000593(n)).
The squares of the form p^2 with p prime are in the sequence because the divisors of 2p^2 are {1,2,p,2p,p^2,2p^2} => sum of even divisors s0 = 2+2p+2p^2 = 2(p^2+p+p^2) and sum of odd divisors s1 = 1+p+p^2 and lambda(s0) = lambda(s1) = lambda(2*s0).
A majority of primes are in the sequence: 3, 5, 11, 13, 17, 19, 29, 37, 41, 43, 53, 59, 61, 67, 73, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 157, 163, 173, 179, 181, 193, 197, ... but the primes 7, 23, 31, 47, 71, 79, 127, 151, 167, 191, 223, 239, 263, 367, 383, 431, ... are not in the sequence.
LINKS
EXAMPLE
18 is in the sequence because A002322(A074400(18))= A002322(78)= 12 and because A002322(A000593(18)) = A002322(13) = 12.
MATHEMATICA
lst={}; f[x_] := Plus @@ Select[Divisors[x], OddQ[#] &]; g[x_] := Plus @@ Select[Divisors[x], EvenQ[#]&]; Do[If[CarmichaelLambda[f[n]]== CarmichaelLambda[g[n]], AppendTo[lst, n/2]], {n, 1, 500}]; lst
PROG
(PARI) a002322(n) = lcm(znstar(n)[2]);
isok(n) = my(sod = sumdiv(2*n, d, d*(d%2))); my(sed = sigma(2*n) - sod); sod && sed && (a002322(sod) == a002322(sed)); \\ Michel Marcus, Mar 07 2015
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Michel Lagneau, Mar 05 2015
STATUS
approved