login
Numbers k such that A248636(k+1) = A248636(k) + 1.
3

%I #4 Oct 17 2014 23:19:52

%S 1,3,5,6,9,11,13,16,18,21,24,27,30,33,36,39,42,45,49,52,55,58,62,65,

%T 68,72,75,79,82,85,89,92,96,99,103,106,110,113,117,120,124,127,131,

%U 135,138,142,145,149,152,156,160,163,167,170,174,178,181,185,189

%N Numbers k such that A248636(k+1) = A248636(k) + 1.

%H Clark Kimberling, <a href="/A248638/b248638.txt">Table of n, a(n) for n = 1..400</a>

%e (A248636(k+1) = A248636(k)) = (2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2,... ), so that A248637 = (2, 4, 7, 8, 10, 12, 14, ... ) and A248638 = (1, 3, 5, 6, 9, 11, 13, ...).

%t z = 300; p[k_] := p[k] = Sum[(h^3/3^h), {h, 1, k}];

%t d = N[Table[33/8 - p[k], {k, 1, z/5}], 12]

%t f[n_] := f[n] = Select[Range[z], 33/8 - p[#] < 1/4^n &, 1];

%t u = Flatten[Table[f[n], {n, 1, z}]] (* A248636 *)

%t d = Differences[u]

%t v = Flatten[Position[d, 1]] (* A248637 *)

%t w = Flatten[Position[d, 2]] (* A248638 *)

%Y Cf. A248636, A248637.

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Oct 11 2014