login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248532
Numbers n such that the smallest prime divisor of n^2+1 is 53.
1
76, 136, 454, 500, 560, 666, 924, 984, 1196, 1454, 1514, 1666, 1726, 2090, 2196, 2256, 2620, 2726, 2786, 3044, 3104, 3150, 3210, 3256, 3316, 3680, 3786, 4104, 4210, 4270, 4316, 4634, 4694, 4800, 4846, 5224, 5330, 5694, 5800, 5860, 5906, 5966, 6224, 6330, 6390
OFFSET
1,1
COMMENTS
Or numbers n such that the smallest prime divisor of n^2+1 is A002313(8).
a(n)== 30 or 76 (mod 106).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
EXAMPLE
76 is in the sequence because 76^2+1= 53*109.
MATHEMATICA
lst={}; Do[If[FactorInteger[n^2+1][[1, 1]]==53, AppendTo[lst, n]], {n, 2, 2000}]; lst
Select[Range[7000], FactorInteger[#^2+1][[1, 1]]==53&] (* Harvey P. Dale, Aug 04 2016 *)
p = 53; ps = Select[Range[p - 1], Mod[#, 4] != 3 && PrimeQ[#] &]; Select[Range[7000], Divisible[(nn = #^2 + 1), p] && ! Or @@ Divisible[nn, ps] &] (* Amiram Eldar, Aug 16 2019 *)
PROG
(Magma) [n: n in [2..7000] | PrimeDivisors(n^2+1)[1] eq 53]; // Bruno Berselli, Oct 08 2014
KEYWORD
nonn,easy
AUTHOR
Michel Lagneau, Oct 08 2014
STATUS
approved