%I #6 Oct 24 2019 22:58:27
%S 9,4,43,2758,10003866,210627752029830,52347107682242256851283255963,
%T 2888760102328257324292867347514624728389388637643413378835,
%U 73966122168790045965795439815232439142274674774329779302853705553926323866554092485061114120398281226411275872002645
%N Egyptian fraction representation of sqrt(86) (A010537) using a greedy function.
%t Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 86]]
%Y Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
%Y Egyptian fraction representations of the cube roots: A129702, A132480-A132574.
%K nonn
%O 0,1
%A _Robert G. Wilson v_, Oct 04 2014