%I #6 Oct 20 2019 21:32:33
%S 6,2,4,31,13905,492036837,305826422756315436,
%T 925021938815488805990118508463313646,
%U 9816702673371796111477307067848281658737547920701725975736611619650989298
%N Egyptian fraction representation of sqrt(46) (A010500) using a greedy function.
%t Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 46]]
%Y Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
%Y Egyptian fraction representations of the cube roots: A129702, A132480-A132574.
%K nonn
%O 0,1
%A _Robert G. Wilson v_, Oct 04 2014