login
A248163
Chebyshev's S polynomials (A049310) evaluated at 34/3 and multiplied by powers of 3 (A000244).
2
1, 34, 1147, 38692, 1305205, 44028742, 1485230383, 50101574344, 1690086454249, 57012025275370, 1923198081274339, 64875626535849196, 2188462519487403613, 73823845023749080078, 2490314568132082090135, 84006280711277049343888, 2833800713070230938880977, 95593167717986358477858226
OFFSET
0,2
COMMENTS
This sequence appears in the solution for the curvature sequence of the touching circle and chord example given in A249457. See also the pair A249862(n) and a(n-1), with a(-1) = 0, for which details are given in A249862.
FORMULA
a(n) = 3^n*S(n, 34/3) with Chebyshev's S polynomial (for S see the coefficient triangle A049310).
O.g.f.: 1/(1 - 34*x + (3*x)^2).
a(n) = 34*a(n-1) - 9*a(n-2), a(-1) = 0, a(0) = 1 .
E.g.f.: exp(17*x)*(140*cosh(2*sqrt(70)*x) + 17*sqrt(70)*sinh(2*sqrt(70)*x))/140. - Stefano Spezia, Mar 24 2023
MATHEMATICA
CoefficientList[Series[1 / (1 - 34 x + (3 x)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 08 2014 *)
PROG
(Magma) I:=[1, 34]; [n le 2 select I[n] else 34*Self(n-1) - 9*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 07 2014
EXTENSIONS
a(16)-a(17) from Stefano Spezia, Mar 24 2023
STATUS
approved