login
A248058
Least positive integer m such that m*n divides phi(m^2+n^2), where phi(.) is Euler's totient function.
4
1, 1, 2, 1, 4, 1, 8, 1, 10, 1, 726, 2, 12, 1, 4, 1, 18, 3, 20, 1, 96, 23, 22, 1, 24, 1, 72, 2, 30, 8, 30, 1, 32, 35, 34, 1, 222, 40, 26, 1, 1312, 43, 42, 46, 360, 44, 48, 2, 588, 1, 50, 2, 5100, 1, 88, 1, 19152, 60, 8, 16
OFFSET
1,3
COMMENTS
Conjecture: (i) a(n) exists for any n > 0.
(ii) For each n > 0, there is a positive integer m such that m*n divides sigma(m^2+n^2), where sigma(k) is the sum of all positive divisors of k.
Note that a(n) = 1 if n^2 + 1 is prime. When n^2 + (n+1)^2 is prime, n*(n+1) divides phi(n^2 + (n+1)^2) = n^2 + (n+1)^2 - 1 and hence a(n) <= n + 1.
If (n*q)^2 + 1 is prime for some q > 0, then for m = n^2*q the number phi(m^2+n^2) = phi(n^2)*phi((n*q)^2+1) = phi(n^2)*n^2 *q^2 is divisible by m*n = n^3*q. - Zhi-Wei Sun, Oct 03 2014
EXAMPLE
a(5) = 4 since 4*5 divides phi(4^2 + 5^2) = phi(41) = 40.
a(919) = 37160684 since the product 919*37160684 = 34150668596 divides phi(919^2 + 37160684^2) = phi(1380916436192417) = 1379413805929632 = 40392*34150668596.
MATHEMATICA
Do[m=1; Label[aa]; If[Mod[EulerPhi[m^2+n^2], m*n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]
PROG
(PARI)
a(n)=m=1; while(eulerphi(m^2+n^2)%(m*n), m++); m
vector(100, n, a(n)) \\ Derek Orr, Oct 01 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Sep 30 2014
STATUS
approved