login
A247718
Decimal expansion of Integral_{0..Pi/2} exp(t)*cos(t) dt.
1
1, 9, 0, 5, 2, 3, 8, 6, 9, 0, 4, 8, 2, 6, 7, 5, 8, 2, 7, 7, 3, 6, 5, 1, 7, 8, 3, 3, 3, 5, 1, 9, 1, 6, 5, 6, 3, 1, 9, 5, 0, 8, 5, 4, 3, 7, 3, 3, 2, 2, 6, 7, 4, 7, 0, 0, 1, 0, 4, 0, 7, 7, 4, 4, 6, 2, 1, 2, 7, 5, 9, 5, 2, 4, 4, 5, 7, 9, 1, 0, 6, 8, 3, 7, 4, 3, 5, 2, 3, 8, 3, 2, 9, 1, 9, 4, 1, 6, 7, 7, 3, 2, 8, 6, 4
OFFSET
1,2
LINKS
D. H. Bailey, J. M. Borwein, Highly Parallel, High-Precision Numerical Integration p. 6. (2005) Lawrence Berkeley National Laboratory.
FORMULA
Equals (A042972 - 1)/2 = A097666 -1/2, where A042972 is exp(Pi/2).
EXAMPLE
1.90523869048267582773651783335191656319508543733226747...
MATHEMATICA
RealDigits[(Exp[Pi/2] - 1)/2, 10, 105] // First
PROG
(PARI) default(realprecision, 100); (exp(Pi/2) -1)/2 \\ G. C. Greubel, Sep 07 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (Exp(Pi(R)/2) - 1)/2; // G. C. Greubel, Sep 07 2018
CROSSREFS
Cf. A042972.
Sequence in context: A010770 A021921 A374751 * A154399 A195483 A093070
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved