login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247236
Triangle read by rows: T(n,k) appears in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} T(n,k)*(x+k)^k.
4
1, -1, 2, -1, -10, 3, -1, 26, -33, 4, -1, -54, 207, -76, 5, -1, 96, -993, 824, -145, 6, -1, -156, 4047, -6736, 2375, -246, 7, -1, 236, -14769, 46184, -28985, 5634, -385, 8, -1, -340, 49743, -280408, 293575, -95166, 11711, -568, 9, -1, 470, -157617, 1556672, -2609465, 1322334, -260449, 22112, -801, 10
OFFSET
0,3
COMMENTS
Consider the transformation 1 + 2x + 3x^2 + 4x^3 + ... + (n+1)*x^n = T(n,0)*(x+0)^0 + T(n,1)*(x+1)^1 + T(n,2)*(x+2)^2 + ... + T(n,n)*(x+n)^n, for n >= 0.
FORMULA
T(n,n) = n+1 = A000027(n+1), n >= 0.
T(n,1) = ((-1)^n*(1-4*n^3-10*n^2-4*n)-1)/8 = 2*(-1)^(n+1)*A002717(n), for n >= 1.
T(n,n-1) = n - n^2 - n^3 (A085490), for n >= 1.
T(n,n-2) = (n^5-2*n^4-3*n^3+6*n^2-2)/2, for n >= 2.
EXAMPLE
From Wolfdieter Lang, Jan 12 2015: (Start)
The triangle T(n,k) starts:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: -1 2
2: -1 -10 3
3: -1 26 -33 4
4: -1 -54 207 -76 5
5: -1 96 -993 824 -145 6
6: -1 -156 4047 -6736 2375 -246 7
7: -1 236 -14769 46184 -28985 5634 -385 8
8: -1 -340 49743 -280408 293575 -95166 11711 -568 9
9: -1 470 -157617 1556672 -2609465 1322334 -260449 22112 -801 10
... Reformatted.
---------------------------------------------------------------------
n=3: 1 + 2*x + 3*x^2 + 4*x^3 = -1*(x+0)^0 + 26*(x+1)^1 - 33*(x+2)^2 + 4*(x+3)^3. (End)
PROG
(PARI) T(n, k)=(k+1)-sum(i=k+1, n, i^(i-k)*binomial(i, k)*T(n, i))
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")))
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Derek Orr, Nov 27 2014
EXTENSIONS
Edited. - Wolfdieter Lang, Jan 12 2015
STATUS
approved