login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247173
Expansion of g.f. (-1)/(2*x^2+2*x) +(-2*x^3-3*x^2+1) / (sqrt(x^4+4*x^3-2*x^2-4*x+1)*(2*x^2+2*x)).
0
1, 1, 7, 25, 101, 397, 1583, 6337, 25513, 103161, 418727, 1705129, 6963165, 28504981, 116941727, 480667137, 1979039633, 8160609457, 33696358983, 139308985465, 576583448021, 2388853677981, 9906585874127, 41118073118785, 170799570803001, 710003165365417
OFFSET
0,3
FORMULA
a(n) = (n+1)*sum(k=0..n, (C(n-k-1,k)*sum(i=0..n-k, 2^i*C(k+1,n-k-i) *C(k+i,k)*(-1)^(n-k-i)))/(k+1)).
Conjecture D-finite with recurrence: -(n+1)*(3*n-4)*a(n) +(9*n^2-3*n-4)*a(n-1) +2*(9*n^2-21*n+8)*a(n-2) +2*(-3*n^2+n+8)*a(n-3) +(-15*n^2+53*n-12)*a(n-4) -(3*n-1)*(n-4)*a(n-5)=0. - R. J. Mathar, Jan 25 2020
a(n) ~ 5^(1/4) * phi^(3*n + 2) / (2^(3/2) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Nov 19 2021
PROG
(Maxima) a(n):=(n+1)*sum((binomial(n-k-1, k)*sum(2^i*binomial(k+1, n-k-i)*binomial(k+i, k)*(-1)^(n-k-i), i, 0, n-k))/(k+1), k, 0, n);
CROSSREFS
Sequence in context: A138729 A035509 A332942 * A141627 A289606 A102900
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Nov 22 2014
STATUS
approved