login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247080
Numbers whose Euler totient is the reverse of the sum of its aliquot parts.
1
2, 735, 7665, 11505, 42630, 64578, 3440409, 11263073973
OFFSET
1,1
COMMENTS
Value of x such that phi(x) = Rev(sigma(x) - x).
a(9) > 2*10^11. - Hiroaki Yamanouchi, Nov 22 2014
a(9) > 10^13. - Giovanni Resta, Aug 26 2019
EXAMPLE
phi(2) = 1 and sigma(2) - 2 = 1.
phi(735) = 336 and sigma(735) - 735 = 633.
phi(7665) = 3456 and sigma(7665) - 7665 = 6543.
MAPLE
with(numtheory): T:=proc(w) local x, y, z; x:=w; y:=0;
for z from 1 to ilog10(x)+1 do
y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end:
P:=proc(q) local n; for n from 1 to q do
if phi(n)=T(sigma(n)-n) then print(n); fi; od; end: P(10^9);
MATHEMATICA
Select[Range[10^6], EulerPhi[#] == FromDigits[Reverse[IntegerDigits[DivisorSigma[1, #] - #]]] &] (* Michael De Vlieger, Jan 29 2015 *)
PROG
(PARI) rev(n) = subst(Polrev(digits(n)), x, 10);
isok(n) = rev(sigma(n)-n) == eulerphi(n); \\ Michel Marcus, Jan 29 2015
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Paolo P. Lava, Nov 17 2014
EXTENSIONS
a(7)-a(8) from Hiroaki Yamanouchi, Nov 22 2014
STATUS
approved