login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247076
Number of tilings of a 5 X 2n rectangle using 2n pentominoes of shape P.
3
1, 2, 6, 20, 62, 194, 612, 1922, 6038, 18980, 59646, 187442, 589076, 1851266, 5817894, 18283700, 57459518, 180575906, 567489348, 1783428098, 5604714422, 17613731780, 55354032894, 173959101458, 546694927604, 1718078222594, 5399341807686, 16968314698580
OFFSET
0,2
FORMULA
G.f.: (x-1)*(x^2+x+1)/(5*x^3+2*x^2+2*x-1).
a(n) = 2*a(n-1)+2*a(n-2)+5*a(n-3) for n>3, a(0)=1; a(1)=2, a(2)=6, a(3)=20.
EXAMPLE
a(2) = 6:
._______. ._______. ._______. ._______. ._______. ._______.
| | | | | | | | | | | | | ._| | | |_. |
| ._| ._| |_. |_. | | ._|_. | |_. | ._| |___| | | |___|
|_| |_| | | |_| |_| |_| | |_| | |_|_| | | |___| |___| |
| | | | | | | | | | | | | ._| | | |_. |
|___|___| |___|___| |___|___| |___|___| |_|_____| |_____|_| .
MAPLE
a:= proc(n) option remember; `if`(n<4, [1, 2, 6, 20][n+1],
2*a(n-1) +2*a(n-2) +5*a(n-3))
end:
seq(a(n), n=0..40);
MATHEMATICA
Join[{1}, LinearRecurrence[{2, 2, 5}, {2, 6, 20}, 40]] (* Jean-François Alcover, May 29 2018 *)
CROSSREFS
Even bisection of main diagonal of A247706.
Sequence in context: A263900 A260696 A052958 * A177792 A193235 A199102
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 17 2014
STATUS
approved