login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247032
G.f.: 1 = Sum_{n>=0} a(n) * x^n * Sum_{k=0..n} C(n,k)^3 * (-x)^k.
0
1, 1, 8, 215, 13544, 1646568, 342128448, 111806434449, 54089613731960, 36991616761628936, 34487632073741256512, 42564197996724997147672, 67876867685905911079322176, 137043021921732373141812704320, 344286933629331983612822165758464, 1060279482920092978432461141783224583
OFFSET
0,3
COMMENTS
Compare g.f. to a g.f. of the Catalan numbers (A000108):
1 = Sum_{n>=0} A000108(n)*x^n * Sum_{k=0..n+1} C(n+1,k)*(-x)^k.
FORMULA
G.f.: 1 = 1*(1-x) + 1*x*(1-2^3*x+x^2) + 8*x^2*(1-3^3*x+3^3*x^2-x^3) + 215*x^3*(1-4^3*x+6^3*x^2-4^3*x^3+x^4) + 13544*x^4*(1-5^3*x+10^3*x^2-10^3*x^3+5^3*x^4-x^5) +...
PROG
(PARI) {a(n)=if(n==0, 1, -polcoeff(sum(m=0, n-1, a(m)*x^m*sum(k=0, m+1, binomial(m+1, k)^3*(-x)^k+x*O(x^n))^1 ), n))}
for(n=0, 10, print1(a(n), ", "))
CROSSREFS
Cf. A180716.
Sequence in context: A081794 A221042 A358211 * A027646 A224096 A224103
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 09 2014
STATUS
approved