%I #11 Apr 03 2023 10:36:13
%S 2,89,479,12547,14563,15667,28807,30367,31663,32119,296969,311561,
%T 318281,328721,383321,409889,422369,452009,490481,511289,792131,
%U 936227,951851,1345037,1366349,1444901,1505261,1543229,1852679,1861511,1865159,1871951,1898447
%N Lesser of Gridgeman pairs in base 8 in increasing order: pairs of primes palindromic in base 8 which differ only in their middle digits by a difference of 1.
%H Chai Wah Wu, <a href="/A246871/b246871.txt">Table of n, a(n) for n = 1..1000</a>
%H Prime Curios!, <a href="https://t5k.org/curios/cpage/8733.html">181</a>
%e 12547 and 12611 are 2 primes with base 8 representation 30403 and 30503 respectively.
%o (Python)
%o from gmpy2 import digits
%o from sympy import isprime
%o A246871 = [2]
%o for n in range(1,8**5):
%o ....s1 = digits(n,8)
%o ....s2 = s1[::-1]
%o ....for m in range(7):
%o ........p1, p2 = int(s1+str(m)+s2,8), int(s1+str(m+1)+s2,8)
%o ........if isprime(p1) and isprime(p2):
%o ............A246871.append(p1)
%o A246871 = sorted(A246871)
%Y Cf. A246488, A246870, A246872.
%K nonn,base
%O 1,1
%A _Chai Wah Wu_, Sep 06 2014