login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246707
Expansion of phi(-q) * phi(-q^2) * phi(-q^3) * phi(-q^6) in powers of q.
2
1, -2, -2, 2, 6, 4, -14, 0, 6, -2, -12, -8, 42, 4, -16, -4, 6, -4, -50, 8, 36, 0, -24, 16, 42, 2, -28, 2, 48, -12, -84, -16, 6, 8, -36, 0, 150, -12, -40, -4, 36, 12, -112, -8, 72, 4, -48, 0, 42, 14, -62, 4, 84, 4, -158, 16, 48, -8, -60, -8, 252, 4, -64, 0, 6
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q)^2 * eta(q^2) * eta(q^3)^2 * eta(q^6) / (eta(q^4) * eta(q^12)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 384 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A033765.
a(2*n + 1) = -2 * A030188(n).
EXAMPLE
G.f. = 1 - 2*q - 2*q^2 + 2*q^3 + 6*q^4 + 4*q^5 - 14*q^6 + 6*q^8 - 2*q^9 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[eta[q]^2* eta[q^2]*eta[q^3]^2*eta[q^6]/(eta[q^4]*eta[q^12]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 18 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^6 + A) / (eta(x^4 + A) * eta(x^12 + A)), n))};
(PARI) q='q+O('q^99); Vec(eta(q)^2*eta(q^2)*eta(q^3)^2*eta(q^6)/(eta(q^4)*eta(q^12))) \\ Altug Alkan, Apr 18 2018
(Magma) A := Basis( ModularForms( Gamma0(24), 2), 26); A[1] - 2*A[2] - 2*A[3] + 2*A[4] + 6*A[5] + 4*A[6] - 14*A[7] + 6*A[8];
CROSSREFS
Sequence in context: A059885 A259689 A300413 * A324339 A211391 A309078
KEYWORD
sign
AUTHOR
Michael Somos, Sep 01 2014
STATUS
approved