login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = T(n,k-2) + 1 if n > 1 and 2 <= k <= n; T(0,0) = 1, T(1,0) = 1, T(1,1) = 2; if n > 1 is odd, then T(n,0) = T(n-1,n-2) + 1 and T(n,1) = T(n-1,n-1) + 1; if n > 1 is even, then T(n,0) = T(n-1,n-1) + 1 and T(n,1) = T(n-1,n-2) + 1.
7

%I #28 Nov 18 2024 07:34:52

%S 1,1,2,3,2,4,3,5,4,6,7,5,8,6,9,7,10,8,11,9,12,13,10,14,11,15,12,16,13,

%T 17,14,18,15,19,16,20,21,17,22,18,23,19,24,20,25,21,26,22,27,23,28,24,

%U 29,25,30,31,26,32,27,33,28,34,29,35,30,36,31,37,32

%N Triangle read by rows: T(n,k) = T(n,k-2) + 1 if n > 1 and 2 <= k <= n; T(0,0) = 1, T(1,0) = 1, T(1,1) = 2; if n > 1 is odd, then T(n,0) = T(n-1,n-2) + 1 and T(n,1) = T(n-1,n-1) + 1; if n > 1 is even, then T(n,0) = T(n-1,n-1) + 1 and T(n,1) = T(n-1,n-2) + 1.

%C As an array, for each m, row 2*m has m odd numbers and m+1 even numbers; row 2*m-1 has m odds and m evens. As a sequence, every positive integer n occurs exactly twice, separated by floor((n+1)/2) other numbers.

%H Reinhard Zumkeller, <a href="/A246694/b246694.txt">Rows n = 0..125 of triangle, flattened</a>

%F T(n, k) = 1 + floor(n/2) * (1+(-1)^k) / 2 + (floor(n/2))^2 + (2*k - 1 + (-1)^k) / 4 + (1-(-1)^n) * (1-(-1)^k) * n / 4. - _Werner Schulte_, Nov 16 2024

%F From _Stefano Spezia_, Nov 17 2024: (Start)

%F T(n, k) = (6 + (-1)^k + (-1)^(k+n) + 4*k + 2*n*(1 + (-1)^(k+n) + n))/8.

%F G.f.: (1 - x^3*y + x^7*y^3 + x^4*(1 - 2*y^2) - x^5*y*(1 - y^2))/((1 - x)^3*(1 + x)^2*(1 - x*y)^3*(1 + x*y)). (End)

%e First 8 rows:

%e 1

%e 1 ... 2

%e 3 ... 2 ... 4

%e 3 ... 5 ... 4 ... 6

%e 7 ... 5 ... 8 ... 6 ... 9

%e 7 .. 10 ... 8 .. 11 ... 9 .. 12

%e 13 .. 10 .. 14 .. 11 .. 15 .. 12 .. 16

%e 13 .. 17 .. 14 .. 18 .. 15 .. 19 .. 16 .. 20

%t z = 25; t[0, 0] = 1; t[1, 0] = 1; t[1, 1] = 2;

%t t[n_, 0] := If[OddQ[n], t[n - 1, n - 2] + 1, t[n - 1, n - 1] + 1];

%t t[n_, 1] := If[OddQ[n], t[n - 1, n - 1] + 1, t[n - 1, n - 2] + 1];

%t t[n_, k_] := t[n, k - 2] + 1; Flatten[Table[t[n, k], {n, 0, z}, {k, 0, n}]](*A246694*)

%o (Haskell)

%o a246694 n k = a246694_tabl !! n !! k

%o a246694_row n = a246694_tabl !! n

%o a246694_tabl = [1] : [1,2] : f 1 2 [1,2] where

%o f i z xs = ys : f j (z + 1) ys where

%o ys = take (z + 1) $ map (+ 1) (xs !! (z - i) : xs !! (z - j) : ys)

%o j = 3 - i

%o -- _Reinhard Zumkeller_, Sep 03 2014

%Y Cf. A246705, A246706, A246696.

%Y Cf. A246695 (row sums), A174114 (central terms).

%Y Cf. A002620 (main diagonal and first subdiagonal), A377802.

%K nonn,easy,tabl

%O 0,3

%A _Clark Kimberling_, Sep 01 2014

%E Edited by _M. F. Hasler_, Nov 17 2014