login
A246527
Number of endofunctions on [n] whose cycle lengths are divisors of 7.
2
1, 1, 3, 16, 125, 1296, 16807, 262864, 4829049, 102073600, 2441582891, 65201946624, 1922453391157, 62009850843136, 2171369477933775, 82007515430081536, 3322113623606686193, 143662773881554108416, 6604529623711334804179, 321608928954695680000000
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(Sum_{d|7} (-LambertW(-x))^d/d).
MAPLE
with(numtheory):
egf:= k-> exp(add((-LambertW(-x))^d/d, d=divisors(k))):
a:= n-> n!*coeff(series(egf(7), x, n+1), x, n):
seq(a(n), n=0..25);
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)*
(i-1)!^j, j=0..`if`(irem(7, i)=0, n/i, 0))))
end:
a:= n-> add(b(j, min(7, j))*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..25);
CROSSREFS
Column k=7 of A246522.
Sequence in context: A245012 A000951 A000272 * A159594 A246525 A193242
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 28 2014
STATUS
approved