login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Nonnegative integers k satisfying cos(k) <= 0 and cos(k+1) <= 0.
4

%I #8 Jul 11 2023 11:28:37

%S 2,3,8,9,15,16,21,22,27,28,33,34,35,40,41,46,47,52,53,59,60,65,66,71,

%T 72,77,78,79,84,85,90,91,96,97,103,104,109,110,115,116,121,122,123,

%U 128,129,134,135,140,141,147,148,153,154,159,160,165,166,167,172

%N Nonnegative integers k satisfying cos(k) <= 0 and cos(k+1) <= 0.

%C A246393 and A246394 partition A062389 (the nonhomogeneous Beatty sequence {floor(-1/2)*Pi)}. Likewise, A246046, the complement of A062389, is partitioned by A246395 and A246396. (See the Mathematica program.)

%C Conjecture: every term t has at least one neighbor which is equal to t plus or minus one. - _Harvey P. Dale_, Jul 11 2023

%H Clark Kimberling, <a href="/A246396/b246396.txt">Table of n, a(n) for n = 0..1000</a>

%t z = 400; f[x_] := Cos[x]

%t Select[Range[0, z], f[#]*f[# + 1] <= 0 &] (* A062389 *)

%t Select[Range[0, z], f[#] >= 0 && f[# + 1] <= 0 &] (* A246393 *)

%t Select[Range[0, z], f[#] <= 0 && f[# + 1] >= 0 &] (* A246394 *)

%t Select[Range[0, z], f[#]*f[# + 1] > 0 &] (* A246046 *)

%t Select[Range[0, z], f[#] >= 0 && f[# + 1] >= 0 &] (* A246395 *)

%t Select[Range[0, z], f[#] <= 0 && f[# + 1] <= 0 &] (* A246396 *)

%t SequencePosition[Table[If[Cos[k]<=0,1,0],{k,200}],{1,1}][[;;,1]] (* _Harvey P. Dale_, Jul 11 2023 *)

%Y Cf. A062389, A246393, A246046, A246394, A246395.

%K nonn,easy

%O 0,1

%A _Clark Kimberling_, Aug 24 2014