OFFSET
1,2
COMMENTS
The Fibonacci cube Gamma(n) can be defined as the graph whose vertices are the binary strings of length n without two consecutive 1's and in which two vertices are adjacent when their Hamming distance is exactly 1.
LINKS
G. G. Cash, Relationship between the Hosoya polynomial and the hyper-Wiener index, Appl. Math. Letters, 15, 2002, 893-895.
S. Klavzar, M. Mollard, Wiener index and Hosoya polynomial of Fibonacci and Lucas cubes, MATCH Commun. Math. Comput. Chem., 68, 2012, 311-324.
Index entries for linear recurrences with constant coefficients, signature (6,-6,-19,24,24,-19,-6,6,-1).
FORMULA
MAPLE
G := z*(1-z-z^2)/((1+z)^3*(1-3*z+z^2)^3): Gser := series(G, z = 0, 40): seq(coeff(Gser, z, j), j = 1 .. 35);
MATHEMATICA
CoefficientList[Series[z (1-z-z^2)/((1+z)^3(1-3z+z^2)^3), {z, 0, 30}], z] (* Harvey P. Dale, Mar 05 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 18 2014
STATUS
approved