OFFSET
1,2
COMMENTS
A066400(n) = length of n-th row.
T(n,k) denote b_k in the definition given in A006255.
From David A. Corneth, Oct 22 2016 and Oct 25 2016: (Start)
Frequency of n in this sequence: 1, 1, 2, 1, 1, 3, 1, 5, 1, 3, 1, 4, 1, 2, ... See A277606.
Primes and squares occur once in this sequence except for 3 which occurs twice.
In the first 10000 rows, 9522 occurs most often and appears 60 times. 6498 is a close second with 59 occurrences.
(End)
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., Problem 4.39, pages 147, 616, 533.
LINKS
Peter Kagey, Table of n, a(n) for n = 1..44055 (Derived from David A. Corneth's unflattened file)
David A. Corneth, First 10000 rows unflattened
EXAMPLE
. -----+------------------------+------------+------------+-----------
. 1 | [1] | 1 | 1 | 1
. 2 | [2, 3, 6] | 3 | 36 | 6
. 3 | [3, 6, 8] | 3 | 144 | 12
. 4 | [4] | 1 | 4 | 2
. 5 | [5, 8, 10] | 3 | 400 | 20
. 6 | [6, 8, 12] | 3 | 576 | 24
. 7 | [7, 8, 14] | 3 | 784 | 28
. 8 | [8, 10, 12, 15] | 4 | 14400 | 120
. 9 | [9] | 1 | 9 | 3
. 10 | [10, 12, 15, 18] | 4 | 32400 | 180
. 11 | [11, 18, 22] | 3 | 4356 | 66
. 12 | [12, 15, 20] | 3 | 3600 | 60
. 13 | [13, 18, 26] | 3 | 6084 | 78
. 14 | [14, 15, 18, 20, 21] | 5 | 1587600 | 1260
. 15 | [15, 18, 20, 24] | 4 | 129600 | 360
. 16 | [16] | 1 | 16 | 4
. 17 | [17, 18, 34] | 3 | 10404 | 102
. 18 | [18, 24, 27] | 3 | 11664 | 108
. 19 | [19, 32, 38] | 3 | 23104 | 152
. 20 | [20, 24, 30] | 3 | 14400 | 120
. 21 | [21, 27, 28] | 3 | 15876 | 126
. 22 | [22, 24, 33] | 3 | 17424 | 132
. 23 | [23, 32, 46] | 3 | 33856 | 184
. 24 | [24, 27, 32] | 3 | 20736 | 144
. 25 | [25] | 1 | 25 | 5 .
MATHEMATICA
Table[k = 0; While[Length@ # == 0 &@ Set[f, Select[Rest@ Subsets@ Range@ k, IntegerQ@ Sqrt[n (Times @@ # &[n + #])] &]], k++]; If[IntegerQ@ Sqrt@ n, k = {n}, k = n + Prepend[First@ f, 0]]; k, {n, 22}] (* Michael De Vlieger, Oct 26 2016 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Reinhard Zumkeller, Jul 25 2014
EXTENSIONS
Following a suggestion of Peter Kagey, definition clarified by Reinhard Zumkeller, Nov 28 2014. Also removed erroneous program and b-file.
STATUS
approved