login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244676
Decimal expansion of sum_(n>=1) (H(n)^3/(n+1)^6) where H(n) is the n-th harmonic number.
4
0, 2, 2, 8, 9, 1, 2, 6, 7, 8, 8, 2, 2, 4, 0, 7, 4, 9, 1, 3, 7, 7, 4, 3, 6, 4, 0, 7, 1, 9, 9, 7, 7, 4, 3, 7, 4, 6, 5, 1, 1, 3, 5, 9, 0, 1, 5, 1, 9, 0, 2, 7, 5, 2, 1, 6, 3, 9, 7, 9, 9, 3, 4, 0, 1, 9, 2, 2, 2, 5, 2, 1, 7, 1, 8, 0, 9, 7, 2, 4, 1, 0, 9, 6, 3, 1, 3, 6, 2, 7, 8, 0, 9, 2, 7, 5, 0, 3, 7, 7, 1, 7, 0, 5, 6
OFFSET
0,2
LINKS
Philippe Flajolet, Bruno Salvy, Euler Sums and Contour Integral Representations, Experimental Mathematics 7:1 (1998) page 27.
FORMULA
Equals -37/7560*Pi^6*zeta(3) + zeta(3)^3 - 11/120*Pi^4*zeta(5) + 1/2*Pi^2*zeta(7) + 197/24*zeta(9).
EXAMPLE
0.02289126788224074913774364071997743746511359015190275216397993401922...
MATHEMATICA
RealDigits[197/24*Zeta[9] - 33/4*Zeta[4]*Zeta[5] - 37/8*Zeta[3]*Zeta[6] + Zeta[3]^3 + 3*Zeta[2]*Zeta[7], 10, 104] // First // Prepend[#, 0]&
PROG
(PARI) default(realprecision, 100); -37/7560*Pi^6*zeta(3) + zeta(3)^3 - 11/120*Pi^4*zeta(5) + 1/2*Pi^2*zeta(7) + 197/24*zeta(9) \\ G. C. Greubel, Aug 31 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); L:=RiemannZeta(); -(37/7560)*Pi(R)^6*Evaluate(L, 3) + Evaluate(L, 3)^3 - (11/120)*Pi(R)^4*Evaluate(L, 5) + Pi(R)^2*Evaluate(L, 7)/2 + (197/24)*Evaluate(L, 9); // G. C. Greubel, Aug 31 2018
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved