OFFSET
0,2
COMMENTS
The graph has 16 nodes and 24 edges.
The node labels are nonnegative integers, and the sum along any of the 4 rows or 4 columns is n.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
G.f.: (1 + 26*x + 131*x^2 + 212*x^3 + 131*x^4 + 26*x^5 + x^6) / ((1 - x)^10).
From Colin Barker, Jan 11 2017: (Start)
a(n) = (7560 + 34164*n + 67044*n^2 + 75190*n^3 + 53382*n^4 + 25095*n^5 + 7896*n^6 + 1620*n^7 + 198*n^8 + 11*n^9) / 7560.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>9.
(End)
PROG
(PARI) Vec((1 + 26*x + 131*x^2 + 212*x^3 + 131*x^4 + 26*x^5 + x^6) / ((1 - x)^10) + O(x^40)) \\ Colin Barker, Jan 11 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 07 2014
STATUS
approved