login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244498
Number of magic labelings of the nodes of the 4 X 4 grid graph with magic sum n.
1
1, 36, 446, 3172, 15891, 62408, 204828, 585672, 1501269, 3521452, 7674810, 15723500, 30556903, 56739216, 101252408, 174482832, 291507177, 473741364, 751024438, 1164218484, 1768415099, 2636848984, 3865629780, 5579414360, 7938153405, 11145058236, 15455946546, 21190138876, 28743091407
OFFSET
0,2
COMMENTS
The graph has 16 nodes and 24 edges.
The node labels are nonnegative integers, and the sum along any of the 4 rows or 4 columns is n.
LINKS
R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
G.f.: (1 + 26*x + 131*x^2 + 212*x^3 + 131*x^4 + 26*x^5 + x^6) / ((1 - x)^10).
From Colin Barker, Jan 11 2017: (Start)
a(n) = (7560 + 34164*n + 67044*n^2 + 75190*n^3 + 53382*n^4 + 25095*n^5 + 7896*n^6 + 1620*n^7 + 198*n^8 + 11*n^9) / 7560.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>9.
(End)
PROG
(PARI) Vec((1 + 26*x + 131*x^2 + 212*x^3 + 131*x^4 + 26*x^5 + x^6) / ((1 - x)^10) + O(x^40)) \\ Colin Barker, Jan 11 2017
CROSSREFS
Sequence in context: A222781 A281403 A256149 * A110693 A104671 A323549
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 07 2014
STATUS
approved