login
A244347
Decimal expansion of 'mu', a Sobolev isoperimetric constant related to the "rod inequality", arising from the elasticity study of a rod that is clamped at both ends.
3
0, 0, 1, 9, 9, 7, 7, 4, 6, 9, 3, 4, 0, 5, 3, 8, 8, 6, 2, 6, 2, 0, 1, 9, 7, 1, 1, 6, 7, 4, 8, 4, 8, 5, 9, 7, 2, 0, 9, 9, 9, 7, 5, 6, 0, 6, 2, 4, 4, 9, 3, 6, 9, 1, 6, 9, 6, 6, 7, 8, 5, 9, 5, 1, 7, 6, 7, 2, 8, 3, 9, 9, 5, 5, 4, 4, 1, 3, 2, 5, 2, 6, 4, 6, 2, 7, 2, 0, 2, 1, 9, 1, 6, 1, 6, 1, 2, 7, 4, 8, 2, 9, 8, 8, 5, 9
OFFSET
0,4
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.6 Sobolev Isoperimetric Constants, p. 221.
FORMULA
mu = 1/theta^4, where theta is A076414.
EXAMPLE
0.001997746934053886262...
MATHEMATICA
digits = 104; theta = x /. FindRoot[Cos[x]*Cosh[x] == 1, {x, 5}, WorkingPrecision -> digits+10]; mu = 1/theta^4; Join[{0, 0}, RealDigits[mu, 10, digits] // First]
CROSSREFS
Cf. A076414 (theta).
Sequence in context: A019895 A196399 A239528 * A341901 A144669 A344688
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved