OFFSET
1,2
COMMENTS
A divisor k of n is non-twin if neither the positive values of k - 2 nor k + 2 divide n.
LINKS
Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
EXAMPLE
The positive divisors of 12 are: 1, 2, 3, 4, 6, 12. Of these, 1 and 3 are twin divisors, 2, 4 and 6 are also twin divisors. The unique non-twin divisor is therefore 12. So a(12) = the number of these divisors, which is 1.
MATHEMATICA
a243917[n_Integer] := Length[Select[Divisors[n], If[And[# <= 2 || Divisible[n, # - 2] == False, Divisible[n, # + 2] == False], True, False] &]]; a243917 /@ Range[120] (* Michael De Vlieger, Aug 17 2014 *)
nntd[n_]:=Module[{d=Select[Divisors[n], #>2&], t}, t=Count[d, _?(!Divisible[ n, #-2] && !Divisible[ n, #+2]&)]; If[!Divisible[ n, 3], t++]; If[ Divisible[ n, 2] && !Divisible[n, 4], t++]; t]; Array[nntd, 100] (* Harvey P. Dale, May 27 2016 *)
PROG
(PARI) a(n) = sumdiv(n, d, (((d<=2) || (n % (d-2))) && (n % (d+2)))); \\ Michel Marcus, Jun 25 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Juri-Stepan Gerasimov, Jun 15 2014
EXTENSIONS
Corrected by Michel Marcus, Jun 27 2014
STATUS
approved