login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243813
Table read by antidiagonals: T(n,k) is the curvature (truncated to integer) of a circle in a variation of nested Pappus chains (see Comments for details).
1
1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 2, 9, 1, 1, 1, 1, 3, 13, 1, 1, 1, 1, 2, 5, 19, 1, 1, 1, 1, 1, 3, 7, 25, 1, 1, 1, 1, 1, 2, 4, 9, 33, 1, 1, 1, 1, 1, 1, 2, 5, 11, 41, 1, 1, 1, 1, 1, 1, 2, 3, 6, 14, 51, 1, 1, 1, 1, 1, 1, 1, 2, 4, 7, 17, 61, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 9, 21
OFFSET
0,6
COMMENTS
Refer to the construction rule used in A243618. For this case, the curvature is defined by (-1/k, 1/(k-1), 1), the circle radius will diverge to infinity (zero curvature). The integral curvatures appearing as periodic, i.e., 2, 6, 6, 10, 30, 42, 28, 12, ..., = A083482(k-1). The integral curvatures seem to align as some sequence, e.g., 3, 7, 13, 21, 31, 43, ..., = A002061(k) and 9, 25, 49, ..., = A016754(k-1). See illustration.
EXAMPLE
Table begins:
n/k 2 3 4 5 6 7 ...
0 1 1 1 1 1 1 ...
1 1 1 1 1 1 1 ...
2 3 1 1 1 1 1 ...
3 5 2 1 1 1 1 ...
4 9 3 2 1 1 1 ...
5 13 5 3 2 1 1 ...
6 19 7 4 2 2 1 ...
7 25 9 5 3 2 2 ...
8 33 11 6 4 3 2 ...
9 41 14 7 5 3 2 ...
10 51 17 9 6 4 3 ...
11 61 21 11 7 5 3 ...
12 73 25 13 8 5 4 ...
...
PROG
(Small Basic)
For k=2 to 100
a=-k
b=k-1
c=1
aa[0][k]=1
For n = 1 To 100
x=a*b*c
y=Math.Power(x*(a+b+c), 1/2)
r=x/(a*b+a*c+b*c-2*y)
aa[n][k]= math.floor(1/r)
If 1/r-math.Floor(1/r)> 0.999999 Then
aa[n][k]=aa[n][k]+1
EndIf
c=r
EndFor
endFor
'=====================================
For t = 1 to 30
d=0
For nn=0 To t-1
kk=t+1-d
TextWindow.Write(aa[nn][kk]+", ")
d=d+1
EndFor
Endfor
CROSSREFS
Cf. Column 1 = A080827(n), column 2 = A056827(n) + 1.
Cf. Integral curvature in column 1..6: [A058331, A227776, A056107, A212656, A158558, A158604].
Sequence in context: A268032 A339899 A305803 * A318453 A318313 A101021
KEYWORD
nonn,tabl
AUTHOR
Kival Ngaokrajang, Jun 11 2014
STATUS
approved