login
A243409
Primes p such that 100p-1, 100p-3, 100p-7, and 100p-9 are all prime.
1
2, 797, 1193, 6803, 15773, 28793, 35507, 41579, 53189, 53279, 57347, 60161, 70457, 77549, 81839, 140549, 143387, 150779, 151241, 164447, 170627, 201011, 255083, 285287, 293831, 300317, 316073, 336671, 343661, 449921, 470087, 486947, 488603, 518801, 556289, 569243, 602087
OFFSET
1,1
LINKS
EXAMPLE
2 is prime, 100*2-1 = 199 is prime, 100*2-3 = 197 is prime, 100*2-7 = 193 is prime, and 100*2-9 = 191 is prime. Thus 2 is a member of this sequence.
MATHEMATICA
Select[Prime[Range[50000]], PrimeQ[100# -1]&&PrimeQ[100# -3]&&PrimeQ[100# -7] &&PrimeQ[100# -9] &] (* K. D. Bajpai, Jun 13 2014 *)
Select[Prime[Range[50000]], AllTrue[100#-{1, 3, 7, 9}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 06 2019 *)
PROG
(Python)
import sympy
from sympy import isprime
from sympy import prime
{print(prime(n), end=', ') for n in range(1, 10**5) if isprime(100*prime(n)-1) and isprime(100*prime(n)-3) and isprime(100*prime(n)-7) and isprime(100*prime(n)-9)}
(PARI) for(n=1, 10^5, if(ispseudoprime(100*prime(n)-1)&& ispseudoprime(100*prime(n)-3)&& ispseudoprime(100*prime(n)-7)&& ispseudoprime(100*prime(n)-9), print1(prime(n), ", ")))
CROSSREFS
Sequence in context: A078169 A226779 A375844 * A281195 A109555 A214898
KEYWORD
nonn
AUTHOR
Derek Orr, Jun 04 2014
STATUS
approved