login
A243238
Table T(n,r) of terms in the reverse and add sequences of positive integers n read by antidiagonals.
11
1, 2, 2, 4, 4, 3, 8, 8, 6, 4, 16, 16, 12, 8, 5, 77, 77, 33, 16, 10, 6, 154, 154, 66, 77, 11, 12, 7, 605, 605, 132, 154, 22, 33, 14, 8, 1111, 1111, 363, 605, 44, 66, 55, 16, 9, 2222, 2222, 726, 1111, 88, 132, 110, 77, 18, 10, 4444, 4444, 1353, 2222, 176, 363, 121, 154, 99, 11, 11
OFFSET
1,2
EXAMPLE
T(5,6) = 88, since 88 is the 6th term in the reverse and add sequence of 5.
Table starts with:
1 2 4 8 16 77 154 605 1111 2222
2 4 8 16 77 154 605 1111 2222 4444
3 6 12 33 66 132 363 726 1353 4884
4 8 16 77 154 605 1111 2222 4444 8888
5 10 11 22 44 88 176 847 1595 7546
6 12 33 66 132 363 726 1353 4884 9768
7 14 55 110 121 242 484 968 1837 9218
8 16 77 154 605 1111 2222 4444 8888 17776
9 18 99 198 1089 10890 20691 40293 79497 158994
10 11 22 44 88 176 847 1595 7546 14003
MAPLE
T:= proc(n, r) option remember; `if`(r=1, n, (h-> h +(s->
parse(cat(s[-i]$i=1..length(s))))(""||h))(T(n, r-1)))
end:
seq(seq(T(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Jun 18 2014
MATHEMATICA
rad[n_] := n + FromDigits[Reverse[IntegerDigits[n]]];
T[n_, 1] := n; T[n_, k_] := T[n, k] = rad[T[n, k-1]];
Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)
CROSSREFS
Rows n=1, 3, 5, 7, 9 give: A001127, A033648, A033649, A033650, A033651.
Main diagonal gives A244058.
Sequence in context: A279211 A110545 A104798 * A169629 A231731 A143358
KEYWORD
nonn,base,tabl
AUTHOR
Felix Fröhlich, Jun 12 2014
STATUS
approved