login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242862
Absolute discriminants of complex quadratic fields with 3-class rank 2.
15
3299, 3896, 4027, 5703, 6583, 8751, 9748, 10015, 11651, 12067, 12131, 15544, 16627, 17131, 17399, 17723, 18555, 19187, 19427, 19651, 19679, 19919, 20276, 20568, 21224, 21668, 22395, 22443, 22711, 23428, 23683
OFFSET
1,1
COMMENTS
The length of the Hilbert 3-class field tower of a complex quadratic field is infinite for 3-class rank at least 3, and it is 1 for 3-class rank 1. In contrast, the length is at least 2 but unbounded for 3-class rank 2, whence this is the only unsolved interesting case.
The terms 3299, 4027 and 9748 have been discussed in detail by Scholz and Taussky. In a footnote they also mention 3896 with an erroneous claim.
REFERENCES
H. Koch, B. B. Venkov, Über den p-Klassenkörperturm eines imaginär-quadratischen Zahlkörpers, Astérisque 24-25 (1975), 57-67.
LINKS
C. McLeman, p-tower groups over quadratic imaginary number fields, arXiv:1008.3003 [math.NT], 2010; Ann. Sci. Math. Québec 32 (2008), no. 2, 199-209.
A. Scholz and O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginär-quadratischer Zahlkörper, J. Reine Angew. Math. 171 (1934), 19-41. DOI:10.1515/crll.1934.171.19
EXAMPLE
For n=1,4, resp. n=2,3, the 3-class group is of type (3,9), resp. (3,3).
PROG
(Magma)
for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C := ClassGroup(K); if (2 eq #pPrimaryInvariants(C, 3)) then d, ", "; end if; end if; end for;
CROSSREFS
Sequence in context: A215565 A068755 A330253 * A078951 A236660 A106721
KEYWORD
easy,nonn
AUTHOR
STATUS
approved