login
A242741
Primes p such that p^2 divides 15^(p-1) - 1.
9
29131, 119327070011
OFFSET
1,1
COMMENTS
Base 15 Wieferich primes. According to Richard Fischer there is no other term up to approximately 5*10^13.
LINKS
Amir Akbary and Sahar Siavashi, The Largest Known Wieferich Numbers, INTEGERS, 18(2018), A3. See Table 1 p. 5.
MATHEMATICA
Select[Prime[Range[1000000]], PowerMod[15, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *)
PROG
(PARI)
forprime(n=2, 10^9, if(Mod(15, n^2)^(n-1)==1, print1(n, ", ")));
KEYWORD
nonn,hard,bref,more
AUTHOR
Felix Fröhlich, May 21 2014
STATUS
approved