login
A242627
Number of divisors of n that are less than 10.
23
9, 1, 2, 2, 3, 2, 4, 2, 4, 3, 3, 1, 5, 1, 3, 3, 4, 1, 5, 1, 4, 3, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 4, 2, 2, 3, 6, 1, 2, 2, 5, 1, 5, 1, 3, 4, 2, 1, 6, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 6, 1, 2, 4, 4, 2, 4, 1, 3, 2, 4, 1, 7, 1, 2, 3, 3, 2, 4, 1, 5, 3, 2, 1, 6, 2
OFFSET
0,1
COMMENTS
Number of numbers <= 9, dividing n;
a(n) <= 9; a(2520*n) = 9;
a(n) = (number of repdigit numbers in row n of triangle A242614) = sum(A202022(A242614(n,k)): k=1..A242622(n)), for n > 0.
Periodic with period 2520. Each period there are 576 1's, 720 2's, 464 3's, 360 4's, 206 5's, 122 6's, 58 7's, 13 8's, and 1 9 (average 2.82...). - Charles R Greathouse IV, Sep 27 2015
LINKS
Index entries for linear recurrences with constant coefficients, signature (-2,-4,-7,-11,-15,-20,-24,-27,-28,-27,-23,-17,-9,0,9,17,23,27,28,27,24,20,15,11,7,4,2,1).
FORMULA
G.f.: Sum_(j=1..9, 1/(1-x^j)). - Robert Israel, Jul 31 2014
MAPLE
a:= n -> numboccur(0, map2(`modp`, n, [$1..9])):
map(a, [$0..100]); # Robert Israel, Jul 31 2014
MATHEMATICA
a[n_] := If[n == 0, 9, Count[Divisors[n], d_ /; d < 10]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 13 2021 *)
PROG
(Haskell)
a242627 n = length $ filter ((== 0) . mod n) [1..9]
(PARI) a(n)=1+sum(k=2, 9, n%k<1) \\ Zak Seidov, Jul 31 2014
CROSSREFS
Cf. A165412.
Sequence in context: A354347 A010166 A186116 * A289502 A010165 A177273
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Jul 16 2014
STATUS
approved