OFFSET
0,1
COMMENTS
Number of numbers <= 9, dividing n;
a(n) <= 9; a(2520*n) = 9;
a(n) = (number of repdigit numbers in row n of triangle A242614) = sum(A202022(A242614(n,k)): k=1..A242622(n)), for n > 0.
Periodic with period 2520. Each period there are 576 1's, 720 2's, 464 3's, 360 4's, 206 5's, 122 6's, 58 7's, 13 8's, and 1 9 (average 2.82...). - Charles R Greathouse IV, Sep 27 2015
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (-2,-4,-7,-11,-15,-20,-24,-27,-28,-27,-23,-17,-9,0,9,17,23,27,28,27,24,20,15,11,7,4,2,1).
FORMULA
G.f.: Sum_(j=1..9, 1/(1-x^j)). - Robert Israel, Jul 31 2014
MAPLE
a:= n -> numboccur(0, map2(`modp`, n, [$1..9])):
map(a, [$0..100]); # Robert Israel, Jul 31 2014
MATHEMATICA
a[n_] := If[n == 0, 9, Count[Divisors[n], d_ /; d < 10]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 13 2021 *)
PROG
(Haskell)
a242627 n = length $ filter ((== 0) . mod n) [1..9]
(PARI) a(n)=1+sum(k=2, 9, n%k<1) \\ Zak Seidov, Jul 31 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Jul 16 2014
STATUS
approved