OFFSET
1,2
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.9 p. 122.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
FORMULA
Equals exp(A131688)/2.
EXAMPLE
1.758743627951184824699896849661932...
MAPLE
evalf(exp(sum((-1)^(n+1)*Zeta(n+1)/n, n=1..infinity))/2, 120); # Vaclav Kotesovec, Dec 11 2015
MATHEMATICA
Exp[NSum[((-1)^n*(-1 + Zeta[n]))/(n - 1), {n, 2, Infinity}, NSumTerms -> 300, WorkingPrecision -> 105] ] // RealDigits[#, 10, 103]& // First
PROG
(PARI) default(realprecision, 100); exp(suminf(n=2, (-1)^n*(zeta(n)-1)/(n-1))) \\ G. C. Greubel, Nov 15 2018
(Magma) SetDefaultRealField(RealField(100)); L:=RiemannZeta(); Exp((&+[(-1)^n*(Evaluate(L, n)-1)/(n-1): n in [2..10^3]])); // G. C. Greubel, Nov 15 2018
(Sage) numerical_approx(exp(sum((-1)^k*(zeta(k)-1)/(k-1) for k in [2..1000])), digits=100) # G. C. Greubel, Nov 15 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, May 19 2014
EXTENSIONS
Data extended and Mma modified by Jean-François Alcover, May 23 2014
STATUS
approved