login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242623
Decimal expansion of Product_{n>1} (1+1/n)^(1/n).
4
1, 7, 5, 8, 7, 4, 3, 6, 2, 7, 9, 5, 1, 1, 8, 4, 8, 2, 4, 6, 9, 9, 8, 9, 6, 8, 4, 9, 6, 6, 1, 9, 3, 2, 0, 8, 5, 3, 4, 2, 8, 1, 0, 3, 9, 3, 3, 8, 2, 4, 6, 9, 0, 9, 8, 8, 7, 8, 4, 0, 0, 3, 9, 7, 7, 2, 0, 5, 1, 9, 5, 0, 2, 4, 9, 0, 3, 5, 3, 1, 9, 1, 1, 4, 3, 3, 6, 8, 9, 0, 2, 2, 6, 5, 2, 5, 6, 7, 5, 8, 6, 9, 8
OFFSET
1,2
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.9 p. 122.
LINKS
FORMULA
Equals exp(A131688)/2.
EXAMPLE
1.758743627951184824699896849661932...
MAPLE
evalf(exp(sum((-1)^(n+1)*Zeta(n+1)/n, n=1..infinity))/2, 120); # Vaclav Kotesovec, Dec 11 2015
MATHEMATICA
Exp[NSum[((-1)^n*(-1 + Zeta[n]))/(n - 1), {n, 2, Infinity}, NSumTerms -> 300, WorkingPrecision -> 105] ] // RealDigits[#, 10, 103]& // First
PROG
(PARI) default(realprecision, 100); exp(suminf(n=2, (-1)^n*(zeta(n)-1)/(n-1))) \\ G. C. Greubel, Nov 15 2018
(Magma) SetDefaultRealField(RealField(100)); L:=RiemannZeta(); Exp((&+[(-1)^n*(Evaluate(L, n)-1)/(n-1): n in [2..10^3]])); // G. C. Greubel, Nov 15 2018
(Sage) numerical_approx(exp(sum((-1)^k*(zeta(k)-1)/(k-1) for k in [2..1000])), digits=100) # G. C. Greubel, Nov 15 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
Data extended and Mma modified by Jean-François Alcover, May 23 2014
STATUS
approved