login
A241981
Number T(n,k) of endofunctions on [n] where the largest cycle length equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
13
1, 0, 1, 0, 3, 1, 0, 16, 9, 2, 0, 125, 93, 32, 6, 0, 1296, 1155, 500, 150, 24, 0, 16807, 17025, 8600, 3240, 864, 120, 0, 262144, 292383, 165690, 72030, 24696, 5880, 720, 0, 4782969, 5752131, 3568768, 1719060, 688128, 215040, 46080, 5040
OFFSET
0,5
COMMENTS
T(0,0) = 1 by convention.
In general, number of endofunctions on [n] where the largest cycle length equals k is asymptotic to (k*exp(H(k)) - (k-1)*exp(H(k-1))) * n^(n-1), where H(k) is the harmonic number A001008/A002805, k>=1. The multiplicative constant is (for big k) asymptotic to 2*k*exp(gamma), where gamma is the Euler-Mascheroni constant (see A001620 and A073004). - Vaclav Kotesovec, Aug 21 2014
LINKS
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 3, 1;
0, 16, 9, 2;
0, 125, 93, 32, 6;
0, 1296, 1155, 500, 150, 24;
0, 16807, 17025, 8600, 3240, 864, 120;
0, 262144, 292383, 165690, 72030, 24696, 5880, 720;
...
MAPLE
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[(i-1)!^j*multinomial[n, {n-i*j, Sequence @@ Table[i, {j}]}]/j!*b[n-i*j, i-1], {j, 0, n/i}]]]; A[n_, k_] := Sum[Binomial[n-1, j-1]*n^(n-j)*b[j, Min[j, k]], {j, 0, n}]; T[0, 0] = 1; T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k-1]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)
CROSSREFS
Columns k=0-10 give: A000007, A000272(n+1) for n>0, A163951, A246213, A246214, A246215, A246216, A246217, A246218, A246219, A246220.
T(2n,n) gives A241982.
Row sums give A000312.
Main diagonal gives A000142(n-1) for n>0.
Sequence in context: A114151 A243098 A360177 * A147723 A110518 A246049
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 10 2014
STATUS
approved