%I #12 May 31 2014 10:41:33
%S 0,1,4,10,19,30,45,61,84,106,134,165,199,234,277,321,364,412,478,523,
%T 595
%N Number of obtuse isosceles triangles, distinct up to congruence, on a centered hexagonal grid of size n.
%C A centered hexagonal grid of size n is a grid with A003215(n-1) points forming a hexagonal lattice.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HexNumber.html">Hex Number</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ObtuseTriangle.html">Obtuse Triangle</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IsoscelesTriangle.html">Isosceles Triangle</a>.
%F a(n) = A241237(n) - A241238(n).
%e For n = 2 the only kind of non-congruent obtuse isosceles triangles is the following:
%e /* *
%e . . *
%e \. .
%Y Cf. A190310, A241230.
%K nonn,more
%O 1,3
%A _Martin Renner_, Apr 17 2014
%E a(7) from _Martin Renner_, May 31 2014
%E a(8)-a(21) from _Giovanni Resta_, May 31 2014