login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p equal to the sum in base-3 of the digits of all primes < p.
6

%I #25 Jul 31 2014 23:47:57

%S 23,31,47,59,695689,698471,883517,992609,992737,993037,1314239,

%T 1324361,1324571,1326511,1327289,1766291,3174029

%N Primes p equal to the sum in base-3 of the digits of all primes < p.

%C Conjecture: this sequence is finite and all terms are shown. - _Robert G. Wilson v_, Jul 27 2014

%C The sum of the digits in base three of all primes < 10^10 is 9694409092. - _Robert G. Wilson v_, Jul 27 2014

%F prime(n) such that, using base 3, prime(n) = sum_{1..n-1} A239619(i).

%e For example, 23 = digit-sum(primes < 23, base=3) = sum(2) + sum(1,0) + sum(1,2) + sum(2,1) + sum(1,0,2) + sum(1,1,1) + sum(1,2,2) + sum(2,0,1).

%t p = 2; s = 0; lst = {}; While[p < 3200000, If[s == p, AppendTo[lst, p]; Print[p]]; s = s + Total@ IntegerDigits[p, 3]; p = NextPrime[p]] (* _Robert G. Wilson v_, Jul 27 2014 *)

%o (PARI) sdt(n) = my(d = digits(n, 3)); sum(i=1, #d, d[i]);

%o lista(nn) = {sp = 0; forprime(p=1, nn, if (p == sp, print1(p, ", ")); sp += sdt(p););} \\ _Michel Marcus_, May 02 2014

%Y Cf. A239619 (Base 3 sum of digits of prime(n)).

%K nonn,base,more

%O 1,1

%A _Anthony Sand_, Apr 14 2014