login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240886
Primes p equal to the sum in base-3 of the digits of all primes < p.
6
23, 31, 47, 59, 695689, 698471, 883517, 992609, 992737, 993037, 1314239, 1324361, 1324571, 1326511, 1327289, 1766291, 3174029
OFFSET
1,1
COMMENTS
Conjecture: this sequence is finite and all terms are shown. - Robert G. Wilson v, Jul 27 2014
The sum of the digits in base three of all primes < 10^10 is 9694409092. - Robert G. Wilson v, Jul 27 2014
FORMULA
prime(n) such that, using base 3, prime(n) = sum_{1..n-1} A239619(i).
EXAMPLE
For example, 23 = digit-sum(primes < 23, base=3) = sum(2) + sum(1,0) + sum(1,2) + sum(2,1) + sum(1,0,2) + sum(1,1,1) + sum(1,2,2) + sum(2,0,1).
MATHEMATICA
p = 2; s = 0; lst = {}; While[p < 3200000, If[s == p, AppendTo[lst, p]; Print[p]]; s = s + Total@ IntegerDigits[p, 3]; p = NextPrime[p]] (* Robert G. Wilson v, Jul 27 2014 *)
PROG
(PARI) sdt(n) = my(d = digits(n, 3)); sum(i=1, #d, d[i]);
lista(nn) = {sp = 0; forprime(p=1, nn, if (p == sp, print1(p, ", ")); sp += sdt(p); ); } \\ Michel Marcus, May 02 2014
CROSSREFS
Cf. A239619 (Base 3 sum of digits of prime(n)).
Sequence in context: A258578 A031924 A257528 * A162587 A033216 A139837
KEYWORD
nonn,base,more
AUTHOR
Anthony Sand, Apr 14 2014
STATUS
approved