login
A240826
Number of ways to choose three points on a centered hexagonal grid of size n.
2
0, 35, 969, 7770, 35990, 121485, 333375, 790244, 1679580, 3280455, 5989445, 10349790, 17083794, 27128465, 41674395, 62207880, 90556280, 128936619, 180007425, 246923810, 333395790, 443749845, 582993719, 756884460, 971999700, 1235812175, 1556767485, 1944365094
OFFSET
1,2
COMMENTS
A centered hexagonal grid of size n is a grid with A003215(n-1) points forming a hexagonal lattice.
LINKS
Eric Weisstein's World of Mathematics, Hex Number.
FORMULA
a(n) = binomial(A003215(n-1), 3)
= binomial(3*n^2-3*n+1, 3)
= 1/2*n*(n-1)*(3*n^2-3*n+1)*(3*n^2-3*n-1)
= 9/2*n^6-27/2*n^5+27/2*n^4-9/2*n^3-1/2*n^2+1/2*n.
G.f.: -x^2*(35*x^4+724*x^3+1722*x^2+724*x+35) / (x-1)^7. - Colin Barker, Apr 18 2014
Sum_{n>=2} 1/a(n) = sqrt(3/7)*Pi*tan(sqrt(7/3)*Pi/2) + sqrt(3)*Pi*tanh(Pi/(2*sqrt(3))) - 2. - Amiram Eldar, Feb 17 2024
MAPLE
seq(binomial(3*n^2-3*n+1, 3), n=1..28); # Martin Renner, May 31 2014
op(PolynomialTools[CoefficientList](convert(series(-x^2*(35*x^4+724*x^3+1722*x^2+724*x+35)/(x-1)^7, x=0, 29), polynom), x)[2..29]); # Martin Renner, May 31 2014
MATHEMATICA
CoefficientList[Series[- x(35 x^4 + 724 x^3 + 1722 x^2 + 724 x + 35)/(x - 1)^7, {x, 0, 50}], x] (* Vincenzo Librandi, Apr 19 2014 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 35, 969, 7770, 35990, 121485, 333375}, 40] (* Harvey P. Dale, Sep 12 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Martin Renner, Apr 17 2014
STATUS
approved